1.35 and 2.07 A resolution structures of the red abalone sperm lysin monomer and dimer reveal features involved in receptor binding.

نویسندگان

  • N Kresge
  • V D Vacquier
  • C D Stout
چکیده

Abalone sperm use lysin to make a hole in the egg's protective vitelline envelope (VE). When released from sperm, lysin first binds to the VE receptor for lysin (VERL) then dissolves the VE by a non-enzymatic mechanism. The structures of the monomeric and dimeric forms of Haliotis rufescens (red abalone) lysin, previously solved at 1.90 and 2.75 A, respectively, have now been refined to 1.35 and 2.07 A, respectively. The monomeric form of lysin was refined using previously obtained crystallization conditions, while the dimer was solved in a new crystal form with four molecules (two dimers) per asymmetric unit. These high-resolution structures reveal alternate residue conformations, enabling a thorough analysis of the conserved residues contributing to the amphipathic nature of lysin. The availability of five independent high-resolution copies of lysin permits comparisons leading to insights on the local flexibility of lysin and alternative conformations of the hypervariable N-terminus, thought to be involved in species-specific receptor recognition. The new analysis led to the discovery of the basic nature of a cleft formed upon dimerization and a patch of basic residues in the dimer interface. Identification of these features was not possible at lower resolution. In light of this new information, a model explaining the binding of sperm lysin to egg VERL and the subsequent dissolution of the egg VE is proposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The high resolution crystal structure of green abalone sperm lysin: implications for species-specific binding of the egg receptor.

Abalone sperm lysin is a 16 kDa acrosomal protein used by sperm to create a hole in the egg vitelline envelope. Lysins from seven California abalone exhibit species-specificity in binding to their egg receptor, and range in sequence identity from 63 % to 90 %. The crystal structure of the sperm lysin dimer from Haliotis fulgens (green abalone) has been determined to 1.71 A by multiple isomorpho...

متن کامل

Crystal structure and subunit dynamics of the abalone sperm lysin dimer: egg envelopes dissociate dimers, the monomer is the active species

Lysin is a 16-kD acrosomal protein used by abalone spermatozoa to create a hole in the egg vitelline envelope (VE) by a nonenzymatic mechanism. The crystal structure of the lysin monomer is known at 1.9 A resolution. The surface of the molecule reveals two tracks of basic residues running the length of one surface of the molecule and a patch of solvent-exposed hydrophobic residues on the opposi...

متن کامل

Abalone lysin: the dissolving and evolving sperm protein.

Abalone sperm lysin is a non-enzymatic protein that creates a hole for sperm passage in the envelope surrounding the egg. Lysin exhibits species-specificity in making the hole and it evolves rapidly by positive selection. Our studies have focused on combining structural, biochemical, and evolutionary data to understand the mechanism of action and evolution of this remarkable protein. Currently,...

متن کامل

Polymorphism in abalone fertilization proteins is consistent with the neutral evolution of the egg's receptor for lysin (VERL) and positive darwinian selection of sperm lysin.

The evolution of species-specific fertilization in free-spawning marine invertebrates is important for reproductive isolation and may contribute to speciation. The biochemistry and evolution of proteins mediating species-specific fertilization have been extensively studied in the abalone (genus Haliotis). The nonenzymatic sperm protein lysin creates a hole in the egg vitelline envelope by speci...

متن کامل

ZP domain proteins in the abalone egg coat include a paralog of VERL under positive selection that binds lysin and 18-kDa sperm proteins.

Identifying fertilization molecules is key to our understanding of reproductive biology, yet only a few examples of interacting sperm and egg proteins are known. One of the best characterized comes from the invertebrate archeogastropod abalone (Haliotis spp.), where sperm lysin mediates passage through the protective egg vitelline envelope (VE) by binding to the VE protein vitelline envelope re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta crystallographica. Section D, Biological crystallography

دوره 56 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2000